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Catalytic cycloadditions viametal carbene intermediates have Table 1. Rhodium-Catalyzed [3 + 2] Cycloaddition®

been extensively studied, and a number of efficient methods are
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available.* However, the majority of reports involve cycload- HZ\/AH'%COW . |‘| ‘ (Rh(cod)ISHFs H;chozﬂs
ditions with electron-rich unsaturated compounds because of the oo, Coges TEE el oo
electrophilic nature of metal carbene intermediates.* Recently, tah Zae (2 equ) 3
several notable examples employing electron-deficient unsatur-
ated compounds were reported.>~> For cyclopropanations of e L we 12T e 2
electron-deficient alkenes with diazo compounds, Ru(l1)/salen? e we ) Meﬁ coae
or Co(Il)/porphyrin® complex-catalyzed reactions were reported. Ao COale A0 COdMe A0 COale
For cycloadditions of electron-deficient alkenes,* alkynes,>*" and o o e
allenes®™ with Fischer carbene complexes, Ni(0)-catalyzed &A}QCOZB Ve, oo h’;":ﬁcoza
cyclopropanations* and Rh(1)-catalyzed [3 + 2] cycloadditions® a0’ GO a0 copipr B0 CopMe
were reported. As an alternative method for the generation of e dea eg('fzﬁf"’c e
metal carbene intermediates that is convenient as well as atom- @’"Qcoza e A com Meﬁ,cma
economical, the 1,2-acyloxy rearrangement of terminal propargy! el ooue ZO ~Nooe B0 oo

esters leading to alkenylcarbene intermediates catalyzed by
Pd(11),° Ru(ll),” and Au(l)® complexes was developed, while
cycloaddition partners are limited to electron-rich unsaturated
compounds.® Here we describe cationic rhodium(l) complex-
catalyzed [3 + 2]*° and [2 + 1] cycloadditions of propargyl
esters with electron-deficient alkynes and alkenes.

Our research group recently reported the cationic Rh(l)/(R)-
Segphos [5,5'-bis(di phenyl phosphino)-4,4’-di-1,3-benzodi oxol €] -
catalyzed enantio- and diastereoselective cotrimerization of
electron-rich alkenes and diethyl acetylenedicarboxylate, leading
to furylcyclopropanes presumably through carbonyl-stabilized
cationic Rh(l) carbene intermediate A (eq 1):**
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This result indicates the nucleophilic nature of Rh(l) carbene
A.

On the other hand, it is well-known that the electrophilic
cationic Rh(l) complex is able to activate alkynes through the
formation of a complex with the sz electrons of the alkyne triple
bond.*? Thus, we anticipated that the cationic Rh(l) complex
would react with an alkoxycarbonyl-substituted propargy! ester
to generate the carbonyl-stabilized cationic Rh(l) carbene
intermediate B viathe 1,2-acyloxy rearrangement; B would then
react with diethyl acetylenedicarboxylate to yield the corre-
sponding furan or cyclopentadiene through the [3 + 2] cycload-
dition of the carbonyl or alkene moiety of B (eq 2):
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3ea (n=1) 67% yield

3ga 50% yield?®

4ha 74% yield?

3ta (n=2) 81% yield

2 [Rh(cod),]SbFs (0.025 mmol), la—h (0.50 mmol), 2a—c (1.00
mmol), and CH,Cl, (1.0 mL) were used. Cited yields are of isolated
products. P Catalyst: 10 mol %. © At 40 °C. 9 Determined by 'H NMR
spectroscopy because of the instability of the product toward silica gel
chromatography.
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It was also expected that the alkoxycarbonyl group would
facilitate the regioselective 1,2-migration of the acyloxy group
because of the electronic polarization of the alkyne triple bond.*

We first examined the reaction of methoxycarbony!-substituted
propargy! ester 1a and diethyl acetylenedicarboxylate (2a) at room
temperature using cationic Rh(1)/bisphosphine complexes, which
are effective for the reaction shown in eg 1, but no cycloaddition
product was generated. After screening catalysts and reaction
conditions,™* we were pleased to find that [Rh(cod),] SbFs effectively
catalyzed the [3 + 2] cycloaddition when excess 2a and high
concentration were employed, affording cyclopentadiene 3aa in
81% yield (Table 1). Not only diethyl but also diisopropyl and
dimethyl acetylenedicarboxylates reacted with 1a, giving cyclo-
pentadienes 3ab and 3ac, respectively, in good yields. With respect
to propargyl esters, a variety of tertiary propargyl esters reacted
with 2a to yield cyclopentadienes 3ba—ga in good yields.*®
Furthermore, a secondary propargyl ester was able to react with
2ato yield the isomerized cyclopentadiene 4ha. Not only electron-
deficient alkynes 2 but also electron-deficient alkenes, acrylamides
5,1¢ were suitable cycloaddition partners (Table 2). N,N-dimethyl-,
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Table 2. Rhodium-Catalyzed [2 + 1] Cycloaddition®
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2 72h R3CO,
la-h 5a-¢ (2 equiv) 6 (single diastereomer)
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6ac 71% yield

6aa 70% yield 6ab 73% yield
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6ba 77% yield 6ca 72% yield 6da 70% yield
i i i
Jn Y NMe, Me Y NMey Y NMe,
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6ea (n = 1) 46% yield
6fa (n =2) 11% yield

6ga 43% yield (E1Z = 1:3)° 6ha 0% yield

@ [Rh(cod),]SbFs (0.025 mmol), 1a—h (0.50 mmol), 5a—c (1.00
mmol), and CH,Cl, (1.0 mL) were used. Cited yields are of isolated
products. ® Catalyst: 10 mol %.
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N-methyl-N-phenyl-, and N,N-diphenylacrylamides reacted with 1a
at 40 °C to give cyclopropanes 6aa—ac in good yields with perfect
diastereoselectivity. The cyclopropanation of acrylamide 5a with
avariety of tertiary propargy! esters proceeded to afford cyclopro-
panes 6ba—ea and 6ga in good yields as single diastereomers, while
exo-akylidenecyclohexane 6fa was generated in low yield and a
secondary propargy! ester failed to react with 5a.

A plausible mechanism for the formation of 3aa and 6aa is
shown in Scheme 1. A metalla-Diels—Alder reaction®*” of alk-
enylcarbene D with 2a furnishes rhodacycle E, and subsequent
reductive elimination yields 3aa. According to the proposed
mechanism of the [3 + 2] cycloaddition of diazoacetates with
alkynes to give furans,*® the formation of furan 7aa through
intermediates F, (2)-G, and H would a so be possible. The metalla-
Diels—Alder reaction rather than the [2 + 2] cycloaddition of
Rh(1)*/cod alkenylcarbene D with 2a proceeds preferentially under
the present reaction conditions, which might account for the
observed chemosel ective formation of 3aa rather than 7aa. Indeed,
the Rh(1)*/cod complexes failed to catalyze the cycloaddition of

ethyl diazoacetate (9) with 2a, while the Rh(l)"/bisphosphine
complex did catalyze the cycloaddition (eq 3):

COEt

Na 10 mol % R catalyst  £1O20N A
¢ +  2a o
H” ~COsEt (2 equiv} CHClp, 1t H
N 24h 10 OEt
[Rh(cod)s]BF 4/Segphos 14%

[Rh(cod)2]BF 4 or [Rh{cod)z]SbFg 0%

The formation of 3aa through intermediates F, (E)-G, and | might
also be excluded as a result of the stable Rh—O chelation in (2)-G
and the absence of possible 3-hydride elimination product 8aa. On
the other hand, the [2 + 2] cycloaddition of intermediate D with
5a furnishes rhodacyclobutane J. Subsequent reductive elimination
yields 6aa. Trans chelation of the ester and amide carbonyl groups
to the cationic rhodium in intermediate J might account for the
observed perfect diastereosel ectivity.*®?° Chelation of the alkenyl-
acetate carbonyl group might be excluded because of the equilibra-
tion between intermediates C and D.*3*P

Future work will focus on further investigations into mechanistic
insights and applications in organic synthesis.
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