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Catalytic cycloadditions via metal carbene intermediates have
been extensively studied, and a number of efficient methods are
available.1 However, the majority of reports involve cycload-
ditions with electron-rich unsaturated compounds because of the
electrophilic nature of metal carbene intermediates.1 Recently,
several notable examples employing electron-deficient unsatur-
ated compounds were reported.2-5 For cyclopropanations of
electron-deficient alkenes with diazo compounds, Ru(II)/salen2

or Co(II)/porphyrin3 complex-catalyzed reactions were reported.
For cycloadditions of electron-deficient alkenes,4 alkynes,5a,b and
allenes5c with Fischer carbene complexes, Ni(0)-catalyzed
cyclopropanations4 and Rh(I)-catalyzed [3 + 2] cycloadditions5

were reported. As an alternative method for the generation of
metal carbene intermediates that is convenient as well as atom-
economical, the 1,2-acyloxy rearrangement of terminal propargyl
esters leading to alkenylcarbene intermediates catalyzed by
Pd(II),6 Ru(II),7 and Au(I)8 complexes was developed, while
cycloaddition partners are limited to electron-rich unsaturated
compounds.9 Here we describe cationic rhodium(I) complex-
catalyzed [3 + 2]10 and [2 + 1] cycloadditions of propargyl
esters with electron-deficient alkynes and alkenes.

Our research group recently reported the cationic Rh(I)/(R)-
Segphos [5,5′-bis(diphenylphosphino)-4,4′-di-1,3-benzodioxole]-
catalyzed enantio- and diastereoselective cotrimerization of
electron-rich alkenes and diethyl acetylenedicarboxylate, leading
to furylcyclopropanes presumably through carbonyl-stabilized
cationic Rh(I) carbene intermediate A (eq 1):11

This result indicates the nucleophilic nature of Rh(I) carbene
A.

On the other hand, it is well-known that the electrophilic
cationic Rh(I) complex is able to activate alkynes through the
formation of a complex with the π electrons of the alkyne triple
bond.12 Thus, we anticipated that the cationic Rh(I) complex
would react with an alkoxycarbonyl-substituted propargyl ester
to generate the carbonyl-stabilized cationic Rh(I) carbene
intermediate B via the 1,2-acyloxy rearrangement; B would then
react with diethyl acetylenedicarboxylate to yield the corre-
sponding furan or cyclopentadiene through the [3 + 2] cycload-
dition of the carbonyl or alkene moiety of B (eq 2):

It was also expected that the alkoxycarbonyl group would
facilitate the regioselective 1,2-migration of the acyloxy group
because of the electronic polarization of the alkyne triple bond.13

We first examined the reaction of methoxycarbonyl-substituted
propargyl ester 1a and diethyl acetylenedicarboxylate (2a) at room
temperature using cationic Rh(I)/bisphosphine complexes, which
are effective for the reaction shown in eq 1, but no cycloaddition
product was generated. After screening catalysts and reaction
conditions,14 we were pleased to find that [Rh(cod)2]SbF6 effectively
catalyzed the [3 + 2] cycloaddition when excess 2a and high
concentration were employed, affording cyclopentadiene 3aa in
81% yield (Table 1). Not only diethyl but also diisopropyl and
dimethyl acetylenedicarboxylates reacted with 1a, giving cyclo-
pentadienes 3ab and 3ac, respectively, in good yields. With respect
to propargyl esters, a variety of tertiary propargyl esters reacted
with 2a to yield cyclopentadienes 3ba-ga in good yields.15

Furthermore, a secondary propargyl ester was able to react with
2a to yield the isomerized cyclopentadiene 4ha. Not only electron-
deficient alkynes 2 but also electron-deficient alkenes, acrylamides
5,16 were suitable cycloaddition partners (Table 2). N,N-dimethyl-,
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Table 1. Rhodium-Catalyzed [3 + 2] Cycloadditiona

a [Rh(cod)2]SbF6 (0.025 mmol), 1a-h (0.50 mmol), 2a-c (1.00
mmol), and CH2Cl2 (1.0 mL) were used. Cited yields are of isolated
products. b Catalyst: 10 mol %. c At 40 °C. d Determined by 1H NMR
spectroscopy because of the instability of the product toward silica gel
chromatography.
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N-methyl-N-phenyl-, and N,N-diphenylacrylamides reacted with 1a
at 40 °C to give cyclopropanes 6aa-ac in good yields with perfect
diastereoselectivity. The cyclopropanation of acrylamide 5a with
a variety of tertiary propargyl esters proceeded to afford cyclopro-
panes 6ba-ea and 6ga in good yields as single diastereomers, while
exo-alkylidenecyclohexane 6fa was generated in low yield and a
secondary propargyl ester failed to react with 5a.

A plausible mechanism for the formation of 3aa and 6aa is
shown in Scheme 1. A metalla-Diels-Alder reaction5,17 of alk-
enylcarbene D with 2a furnishes rhodacycle E, and subsequent
reductive elimination yields 3aa. According to the proposed
mechanism of the [3 + 2] cycloaddition of diazoacetates with
alkynes to give furans,18 the formation of furan 7aa through
intermediates F, (Z)-G, and H would also be possible. The metalla-
Diels-Alder reaction rather than the [2 + 2] cycloaddition of
Rh(I)+/cod alkenylcarbene D with 2a proceeds preferentially under
the present reaction conditions, which might account for the
observed chemoselective formation of 3aa rather than 7aa. Indeed,
the Rh(I)+/cod complexes failed to catalyze the cycloaddition of

ethyl diazoacetate (9) with 2a, while the Rh(I)+/bisphosphine
complex did catalyze the cycloaddition (eq 3):

The formation of 3aa through intermediates F, (E)-G, and I might
also be excluded as a result of the stable Rh-O chelation in (Z)-G
and the absence of possible �-hydride elimination product 8aa. On
the other hand, the [2 + 2] cycloaddition of intermediate D with
5a furnishes rhodacyclobutane J. Subsequent reductive elimination
yields 6aa. Trans chelation of the ester and amide carbonyl groups
to the cationic rhodium in intermediate J might account for the
observed perfect diastereoselectivity.19,20 Chelation of the alkenyl-
acetate carbonyl group might be excluded because of the equilibra-
tion between intermediates C and D.13a,b

Future work will focus on further investigations into mechanistic
insights and applications in organic synthesis.
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